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THE PERCEPTRON AS AN ADAPTIVE CLASSIFICATION DEVICE

Prepared by:
C. Nicholas Pryor, Jr.

ABSTRACT: Many data reduction problems fall under the general
category of classification, such as sonar target classiflcation
or character recognition. These may be represented as a process
of mapping & hyperspace representing the input data into an out-
put space representing distinct decisions or categories. The
majority of practical problems may be simplified by the assump-
tion of continuity in the mapping process, and it 1s desirable
to mechanize the classification problem according to this
assumption.

A class of adaptive mechanisms known as learning
machines has the capability of classifying input data, and a
machine of this sort can adjust itself to satisfy the desired
classifying criterion if it is given a collection of input data
identified as to its desired class. One machine of this type is
known as the Perceptron and is discussed in some detail. A
simpler form of the machine, the half-Perceptron, is also dis-
cussed. :

These two types of learning machines were simulated
on the IBM 704 computer, and sample problems in classification
were processed on them. The results demonstrate some of the
capabilities and limitations of the two mechines.

A discussion 1s also included on the possible future
role of learning machines, and on their application to naval
problems.
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This report gives the results of programming an IBM 704

Computer to act as a PERCEPTRON (& self-adaptive or learning
machine) on two simplified classification problems as a
preliminary to a study of submarine classification with sonar
data. The work on this project was supported under

Task No. RUSD-4C150, PUFFS Technical Direction. The report . ..
is for the information of other scientists interested in - . : -
classification problems or in the use of computers as

adaptive machines. :
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' THR PERCEPTRON AS AN ADAPTIVE CLASSIFICATION DEVICE

THE CLASSIFICATION PROBLEM

1.1 In many problems in data reduction such as character
recognition and sonar target classification, a large amount of
data is available (such as light intensity at many points on a
retina or spectral intensity at many frequencies); and the prob-
lem 1s to identify a given set of input data as belonging to one
of several possible disjoint classes or categories of input sig-
nal, each of which must give rise to a distinct decision or out-
put state of the data reduction system. If there are N pleces
of input data, each with a number of discrete or a range of con-
tinuous values, the input to the system may be represented by a
point in an N-dimensional "input spage". Correspondingly if
there are M possible output decisions that may be made (that 1is,
M possible output classes), we may think of the output as a one-
dimensional space containing M discrete points; and the problem
becomes one of a many-to-one transformation of points from the
input space to the output space. Another way of considering the
problem is that of labeling every point in the input space with
the identification (perhaps a number from 1 to M) of the output
state appropriate to it.

1.2 8So. far we have assumed that the output state required
for a given point in input space is independent of that required
for any other point, and that it is necessary to examine each
point in detail to determine its required output. This is an
overwhelming job in any reasonable problem and of course impossi-
ble 1f any one of the input variables is continuous. However,
this is the approach which must be taken if any of the usual
switching circuit or logical computer realizations is to be
attempted.

1.3 In most problems of practical interest it is reasonable
to assume that smeall changes in one or more of the input variables
will tend not to change the desired output state. That is, near-
by points in the input space will tend to belong to the same
class, and the transformation from input space to output space
will tend to be continuous. The problem now becomes a simpler
one of determining the boundaries separating regions of input
space belonging to different classes. It is no longer necessary
to study overz possible input state, but only enough to estimate
these boundaries in the input space. New points (that is points
which were not initially used in establishing the boundaries)
are then categoriged according to the region in which they fall,
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which means that they are assumed to belong to the same class
as neighboring points. If this decision proves to be wrong, it
i1s then necessary to adjust the boundaries or perhaps to form &
new region to take the new point into account.

l.4 In spite of this simplification, determining the
proper boundaries from a collection of input data and desired
outputs is still an enormous job (made even more so by the
difficulty of thinking in more than three dimensions) and it

becomes desirable to mechanlze this operation. 1In genernl'thil- 

problem is handled by some sort of adaptive mechanism to which

a sample of input data is fed, along with information concerning
the desired output. Internally, the machine consists of a large -
logical network, whose logical function may be varied by adjust- .
ment of some parameters of the network. Certain types of logi- .

cal systems have the desired characteristic of tending to pro-
duce the same output for similar inputs, and these networks may
be thought of as defining the regions of input space for which
a given output will occur. If the machine output differs from
the desired output, & corrective signal 1s fed back to the
machine. This performance feedback is designed to adjust the.
internal construction of the logical network in such a way as
to correct, or reduce the probabllity of, the wrong answer.

The effect of this, in a properly designed mechanism, is to.
move the boundaries between regions of input space in such a

way that the given input point will be included in the proper
region.

1.5 In an ideally designed machine, only the boundary in
question will be moved; and training for one input point will
not affect the response for other points outside its immediate
vicinity. It is usually not possible to attain this degree of
independence in a practical mechanism, and all boundaries will
tend to move during a given training operation. This reduces
the convergence to the proper configuration to an iterative
procedure of successive approximations, and it is usually neces-
sary to go through a given finite 1ist of input data a number
of times before error-free operation can be obtained. This
gives the machine a statistical appearance, even though the in-
ternal operation is usually not randomly determined, and the

size of the machine generally makes anything other than statisti-

cal analysis impractical. For this reason, it is usually suf-
ficient in the training procedure simply to make corrections in
the direction of including the input point in the desired
region rather than necessarily forcing the machine to produce
the desired answer before going on to the next input sample.

1.6 The complexity of the internal logical network of the
adaptive system determines the degree of detail in the appor-
tioning of input space which may be stored in the memory of the

2
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logical network. Where the input space is divided into many
separate regions with complicated boundaries, a very elaborate
switching circuit would be required to realize the logical
functions implied by these regions. Thus it would be expected
that a rather large adaptive logical network might be required
to simulate this operation. Conversely, certain simple geome-
tries of the regions in input space may be realized using rather
small logical networks. In addition to this, many of the simple
logical systems which may be used in an adaptive learning
machine have fundamental limitations which prevent them from
being able to realize certain geometries within the input space.
These weaknesses generally become apparent upon careful study of
the philosophy used in the machine organization.

1.7 The following sections of this report discuss the
organizetion of two types of adaptive classification or learning
machines. Their simulation on an IBM 704 computer is also dis-
cussed, and sample problems are shown which demonstrate the
capabilities and characteristics of the machines further.

THE PERCEPTRON

2.1 A device which seems rather well suited for the classi-
fication problem is the Perceptron, developed at the Cornell
Aeronautical Laboratory. The Perceptron was developed as a model
of the possible construction of the human nervous system, and
thus its components may be identified with the receptor neurons,
motor neurons, and intermediate "gray matter" neurons in the
nervous system. The orgsnization of the device is shown in
Figure 1. Inputs to the system are represented by the states of
the Stimulus (S) Units, and through the logical network the
excitations to the Response (R) Units are determined. The binary
state of the several R Units is considered to be the output of
the device.

2.2 Tb logical function is carried out by the intermediate
Association Units, which act as the connections between the
S and R Units. Each A Unit has a number of input connections
(dendrites) which are randomly connected to several of the S
Units. The output of the A Unit is connected at random to an
input of one of the R Units. Of course, no generality is lost
by reordering the A Units so that all those connected to a given
R Unit are located together as shown in Figure 1. REach A Unit
is a two-state device which is either on or off depending on
whether the total excitation to the A Unit (sum of all its in-
puts) exceeds a given threshold level. If the A Unit is on, a
signal proportional to its "Value" 1s placed on its outaut
temminal. If it 1s off, either no signal or minus the "Value"
is placed on the output, depending on the construction of the

3
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particular machine. Each R Unit then becomes either on or off
depending on whether its input excitation (the sum of the ocut-
puts of all A Units connected to it) is above or below a fixed
threshold. ‘

2.3 In the nervous system the output of each neuron is a
signal of fixed magnitude, and the triggering level or threshold
of the neuron varies according to some electrochemical process
within the neuron. Learning, or modification of the logical
network within the nervous system, 1s accomplished by varying
the triggering level of the individual neurons according to tho
reinforcement given to certain responses and to whether the - -
neurons were active during the response. 1In the Perceptron, the
thresholds of the individual A Units are kept fixed, but their
Values are varied acocording to the reinforcement given the
pachine. The two methods of learning are roughly equivalent, -
but in the Perceptron with 1ts smaller number of components

(roughly 103 A Units against 1010 neurons in the brain) finer =
detsall of learning may be accomplished by varying the Valués
and keeping the thresholds fixed. Of course it is necessary to

- adjust the Values during the training operation in some system-

atic way that will tend to converge toward solution of the
problem. A number of procedures for adjusting the A Unit Values
have been studied and their characteristics reported by Cornell
Aeronautical Laboratory.

2.4 Each of the A Units may be thought of as a basic
logical element which performs & boolean operation on its 1nputs.
In particular this operation is the symmetric function ST, N

¢ o0 0y

where there are N inputs to the A Unit and the threshold is T. .-
The inputs to the A Unit may be restricted to the outputs of the
S Units, or for a more general logic both the S Unit outputs

and their complements may be made available as inputs for the A
Units. The excitation to the R Units 1s then some linear combi-
nation of the symmetric functions realized by the A Units, and
it 1s this linear combination that is varied during the learning
process. Finally the greater-than- or less-than decision in the
R Unit produces the last stage of logic. Thus the overall
machine looks like a logical network, although it is really com-
posed of two nonlinear elements separated by a linear operation.-
In general the number of possible logical functions which the
machine can realigze is limited by the complexity of the logical .
system, or by the number of A Units in the Perceptron. Thus the
capability of a Perceptron for discovering and learning complex
input-output relationships is roughly determined by the number
of A Units in the machine, and the performance of a Perceptron
will be improved by increasing the number of A Units.

e Sl
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2.5 There is, of course, & maximum number of A Units which
may be used without duplication, due to the finite number of
possible combinations of wiring between the 8 Units and the

A Units. If there are N Stimulus Inputs, then there are N!
nT(R-n)!

ways in which n of them can be connected to an A Unit. If each
of the connections can either be to the direct output of the S8
Unit or to its complemented output, then the number of distinect

connections 1s increased by a factor of 2P. Summing these over-
41l values of n from 0 to N, we obtain 2N possible ways of wiring

A Units if complements of the S Unit outputs are not used and 3N
ways 1f complements are allowed. However, for each A Unit with
n input connections, there are n possible settings of 1its thresh-
0ld which will give distinct loglcal operation. Thus n different
A Units could be bullt with the same input connections but
differing in thresholds, which will give different logical out-
puts. It must be noted that a given A Unit with n inputs and a
threshold of k will have a logical output complementary to that
of another A Unit with its n inputs connected to the complements
of the same set of n S Units and with a threshold of n-k. Half
the A Units will then have outputs complementary to the other
half, so there are only n R N} logically independent

2 nl (KR-n)1
A Units possible with n inputs from the set of N Stimulus Units.
Summing this over n from O to N yields g 3N for the total number

of different A Units which may be built into an N input Perceptron.

The number of wires involved in the connections from the S Units
to the A Units may also be computed since there are n wires to
each A Unit with n inputs. Thus the number of wires in the

i | 2
S - A matrix is ﬁ: 5 2 ot O (awen) -V,
0

2.6 The size of these numbers can best be appreciated by
considering a simple example. In a 10 input machine there would
be 102l possible A Units if no complements were allowed or
59,049 A Units if 8 Unit outputs and their complements were
allowed, asing fixed thresholds in both cases. If all logically
distinct thresholds were allowed in order to produce the most
general machine, there could be as many as 196,830 A Units used
without duplicating or complementing any logical funoctions. This
machine would require 1,377,810 wires in the connections between
S Units and A Unitsn While these numbers age still very small

compared to the 5(2%) or approximately 10300 qifferent logical
funotions which it is possible to form from the 10 inputs, it is

5
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fairly obvious that one would not want to bulld the most general .
Perceptron for even ten inputs using present circuit techniques.
Thus it is necessary to bulld Perceptrons using only a small
percentage of their total possible A Units, generally limiting
the sclection to some class (such as a fixed value of n) and
then taking only a random sampling of that class. Whlle some
work has been done on the slope and asymptote of the learning
curves of Perceptrons as a function of the number of A Units,

it is still not clear just what limits are placed on the appor-
tioning of the input space by a Perceptron with a given number
of A Units.

HALF-PERCEPTRON

3.1 A simpler form of learning machine which is much
smaller than the Perceptron has also been proposed, and it is
termed a half-Perceptron because it is really a degenerate fom
of the Perceptron. .If a Perceptron is built with exactly N
Association Units connected to each of the R Unlits, and each of
the A Units is connected simply to one of the S Units, the
machine reduces to the form of Figure 2. In this device there
1s clearly only one logical transormation from the input space
(states of the S Units) to the output space (excitations of the
R Units), while in the Perceptron there are two layers of logi-

. "
A e e s St n gl T

cal transformation. The first of these may be considered as a .

transformation from input space to A Unit excitation space, and
the second as a transformation from A Unit space to the output
space. The additional logical "depth" in the Perceptron allows
it to realize much more complex logical functions than can the
half-Perceptron with a logical depth of only one. It seems
reasonable to expect that a machine similar to the Perceptron
with a logical depth of three or more (obtained by two or more
layers of A Units, with each layer providing the excitation for
the next) would be even more powerful than the Perceptron.

3.2 The half-Perceptron with a single R Unit is a suf-
ficiently simple machine that it is not too difficult to see the
restrictions on the functions that may be realized by 1it.
Basically the device produces an arbitrary linear combination of
the input excitations and then determines whether this is
greater or less than a fixed threshold. In terms of the parti-
tioning of the input space, the result is that the space will
consist of only two regions or decision classes; and these will
be separated by an arbitrarily placed and oriented N-dimensional
hyperplane. This restricts the types of functions which may be
realized by the half-Perceptron, and the restriction grows more
severe as the number of inputs increases. For example both of
the two functions of no inputs, all of the four functions of one
variable, and 1 of the 16 functions of two variables may be

6
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realized; while only 104 of the 256 functions of three variables
may be realized. In the two-input case such functions as the
logical "or" or "and" may be realized, while the disjunctive
functions testing for agreement or disagreement in sign cannot
be realized.

3.3 In half-Perceptrons with more than one R Unit, the
same restrictions apply to each of the R Units individually.
However, if the several R Unit outputs are taken together in some
logical fashion to represent a single decision (corresponding to
adding a second layer of logic), more complicated regions can be
formed although they will still be bounded by hyperplanes. Thus,
for example, the test for agreement of two or more inputs may be
made as the lo§1cal "or? of two R Unit outputs; one of which pro-
duces the "and" of the required inputs and the other of which
produces the "not-or" of the inputs.

COMPUTER SIMULATION OF THE PERCEPTRON

4.1 The IBM 704 computer simulation program for the Per-
ceptron is given in Appendix 1. The program was written in SHARE
symbolic language rather than in FORTRAN in order to provide more
flexibility in coding for decreased running time. Running of the
program 1s intended to be under control of the BELL Operating
System, and the modified FORTRAN input and output routines
avallable as part of the BELL system were used for all input and
output routines except for binary tape operations. Because of
BELL system use of sense switches, program stops were necessary
within the main program in order to allow resetting of the sense
switches after leaving and before re-entering BELL system control.

4.2 The number of S Units for the Perceptron was chosen to
be 64, and the number of R Units can be varied from one to six
as determined by the initial parts of the Perceptron program.

The number of A Units was then selected to be as large as possible,
consistent with machine size and operating speed. The most criti-

cal part of the program for speed considerations is the computa-
tion of the A Unit excitations from the S Unit states since this
requires a determination of all the S to A connections for each
input data sample. Because of the large number of connections
this must be done in the fastest way possible, even at the sacri-
fice of storage space. Repeated computation of these connections
is out of the question, and storage on tape 1is also too slow to
be practical. Even though the address of the S Unit has only six
significant bits, 1t 1s unwieldy to store several addresses in
the same word of core storage because of the computation neces-
sary to select any one of them. Thus the only alternative was

to reserve one word of core storage for each connection between

S and A Units. Approximately 22,000 words were available for

7
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this function, and these were divided among 2760 A Units where .

each A Unit would have 8 input connections. Thus the parameters
of the Perceptron are 6l Stimulus Units, 1 to 6 Response Units,

and 2760 Association Units equally divided among the Response .

Units, with each A Unit having 8 connections to S Units.

4.3 The Flow Chart representing the Perceptron operation
is shown in Figure 3. The first operation is an HPR to allow
the sense switches to be set as desired for starting the program.
This 1s followed by a test of sense switch 4. If this switch
is down, binary tape 7 is read to insert a new set of S to A
connections (essentially rewire) in the Perceptron. If the
switch is up, binary tape 8 1s read instead, which contains the
last previously used set of S to A connections as well as the
last previous A Unit Values and other Perceptron parameters.

If tape 8 was read, sense switch 3 1s tested next. If the
switch is down a card (or a record on tape O, depending on the
setting of sense switch 5) is read containing 6 parameters
defining the Perceptron operation. PLUS and MINUS control the
steps teken in A Unit Values during the training process and may
be used to modify the training scheme. THOLD is the fixed
threshold level for all the A Units. INDEX4 contains R, the
desired number of Response Units, and INDEXS5 contains the number
2760/R, or the number of A Units connected to each R Unit.
ZROVAL is a control word which 1s tested in the next step of the
program. If ZROVAL 1s zero, all the A Unit Values in the
machine are initialized at zero Value or at the Values read in
from tape 8. If ZROVAL is not zero, initial Values are then
read in from cards or tape 0.  If sense switch 3 is up, the
machine parameters and A Unit Values are left as they were read
in from tape 8. The machine parameters are then printed out

and the program stops to allow sense switch 5 to be reset or to
allow tape O to be changed. The Perceptron is now initialigzed
and ready to begin reading data.

4.4 The 6 S Unit excitations and the correct R Unit
reaponses corresponding to one data point are then read in from
a card or a record on tape 9. The first 64 card columns contain
the S Unit inputs, then after two blank spaces columns 67-72
contain the R Unit correct answers. If only R of the six R Units

. are used, then the R correct answers should be put in columns

73-R to 72. Although the machine was primarily designed for
binary inputs so the S Unit excitations would be 1l's or O's, it
is possible to use any number from 0 through 9 for the excita-
tion. Using multi-level data of this sort tends to emphasize

the data points with the highest levels at any sample and ignore -
the lower level inputs. This may be desirable for some types of
problems but not for others.

T e e e h - e aa” M
S ot e ot 8, o . S i I

e



SRS

e e e ozt

NOLTR 61-114

4.5 The next section of the program is the most critical,
in that the computer spends practically all its time executing
one small loop. The five-instruction loop is:

LDQ CONMAT+22080,1
STQ #+1

ADD

TXI #+1,1,1

TIX #-l,k,1

Before each entry into the loop Index Register 4 is loaded with
an 8 and the accumulator is cleared. The 22080 words of the
CONMAT matrix contain +0400000004xx (or possibly +040200000Lxx)
where xx represents a random octal number corresponding to one

of the S Units. The first two instructions in the loop move the
word in CONMAT (under control of Index Register 1) into the next
executable location taking it by way of the MQ. There the word
is interpreted as an ADD (or SUB) instruction so that the con-
tents of the xx S Unit are added to (or subtracted from) the
accumulator. The next instruction increments IR #1, and the

last tests IR #4 and tranafers out of the loop after 8 itera-
tions. The contents of the accumulator then equal the excitation
to an A Unit. The threshold 1s subtracted and the net excitation
1s stored in an A Unit memory location. The A Units are counted
by IR #2; and the program loops back, re-initializes IR #4 and
the accumulator, and computes another A Unit excitation until all
2760 A Units have been handled. Thus the S5-instruction loop is
iterated a total of 22080 times, and the remaining five instruc-
tions in the larger loop 2760 times, for each data input sample.
The number of machine cycles for this part of the program 1s then
2[5(22080)+5(2760) or 248,400 cycles. This requires almost 3
seconds of machine time, or considerably more than half the total
5.1 second computing time required for each data input.

4.6 Next the A Unit excitations are tested for sign, and
their state (On if sign was plus, Off 4if minus) is stored. The
Values of the On A Units are added, and the Values of the Off A
Units are subtracted to compute the excitations to the R Units.
Then the R Unit excitations are tested for sign,and the R Unit
is put in its "1" state if the sign 1s plus and "O" if the excita-
tion is negative. This completes computation of the Perceptron
output decision; it 1s now necessary to check the decisions
against the correct answers and to train the machine.

4.7 Each R Unit state is compared with the answer supplied
on the data card, and & 2ero is placed in a checking storage to
indicate a correct answer. If the answer 18 wrong, a "1" is
stored and sense switch 1 is tested to determine whether the
machine is to be corrected or not. If switch 1 is up, no adjust-
ment is made to the Perceptron. If the switch is down, the

9
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A Unit values are to be corrected in such a way as to increase -
the probability of a correct answer. The adjusting (or train-

ing) logic 1s as follows: If the output of an R Unit was zero

when the desired output was a "1", then it 1is necessary to .
increase the excitation to the R Unit. This is done by adding

& fixed step of magnitude PLUS to the Values of all the A Units

which are "on" and which are connected to the given R Unit. A

fixed step equal to MINUS is also added to the Values of the A

Units which are "off" and are connected to the given R Unit.

Thus the Values of the "on" A Units are increased, and the Value

of the "off" A Units are decreased, both of which have the '

effect of increasing the excitation to the R Unit. If the R

Unit output is "1" and the desired output is "O", then it is

necessary to decrease the excltation to the R Unit. This is

N e
e e 1t B T B

“done by subtracting PLUS from the  Values of the "on" A Units

and subtracting MINUS from the "off" A Units. No changes are
made in A Unit Values if the R Unit output agrees with the
desired response. By adjusting the relative sizes of PLUS and
MINUS, it i1s possible to achieve different sorts of reinforcement
behavior. Notice that the tralning here is only in the direction
of correcting the error and takes place in fixed steps. This
differs from the procedure usually used &t Cornell where the
correction is made big enough to force the correct response be-
fore the machine goes on to the next data sample. In either

case a number of runs through a given list of data points are .
usually necessary before perfect learning occurs, and the cholice
as to which of the techniques is preferable depends primarily on
the application for which the Perceptron is intended.

4.8 After the Perceptron has responded to an input data
sample and has been trained as necessary, & single line of out-
put is written summarizing these operations. The first 64 entries
in the line identify the input data point, and the following six

"bits correspond to the desired responses as read from the input

card (or tape). The next group of six bits represents the R
Unit states, and the last group of six bits indicates agreement
(a zero) or disagreement (a one) of the R Unit states and the .
desired outputs. A single bit at the end of the 1line 1indlcates

the state of sense switch 1; being a "1" if the Perceptron was
being trained or "O" if the machine was being tested without
training. This output can be written only on tape 9 if sense
switch 6 1s up, or on both tape 9 and the on-line printer if
the switch 1s down.

4.9 Finally sense switch 2 1s tested as a method of ending
the computer run. If switch 2 is up, the computer reads another
input card (or tape record) and repeats its operations on the
next data sample. When switch 2 1s put in its down position,
the computer will stop reading input data and transfer to an un-
loading routine. This routine prints out the Values of all the

10
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A Units on the output tape (tape 9) and/or the printer; then it
stores the 8 to A connection matrix (CONMAT), the A Unit Values,
and the other Perceptron parameters on binary tape 8 to allow
temporary suspension of running while maintaining stored Values
and other parameters. Notice that the A Units are stored back-
wards in the machine. Thus the A Unit in the lowest machine
address (and whose Value is first in the printout) is connected
to the last R Unit (whose outputs appear in the sixth bit of the
R Unit group in the printout), and its inputs are represented by
the last eight entries in the CONMAT list. Before returning to
the BELL System, the maclilne stops once more to allow the sense
switches to be returned to their normal positions. Then an
automatic return to BELL System control allows sequencing of the
next job into the computer.

GENERATION OF RANDOM PERCEPTRON CONNECTIONS

5.1 Since the Perceptron program requires as one of its
inputs a 1list of the 8 to A cross-connections (CONMAT), a pro-

was written to generate this connection matrix. The
FORTRAN 3 program shown in Appendix 2 generates this list from
& random number subroutine and writes the CONMAT 1list on binary
tape 7. The commections to each A Unit are independent of those
to other A Units, but the eight inputs to each A Unit are
selected such that no two of them connect to the same S Unit.
The particular random set of connections chosen depends on the
octal number Q which is fed in to start the routine.

5.2 When the octal number INST on the input card repre-
sents ADD 400, the word stored on the binary tape corresponding
to each entry in the CONMAT list is +0400000004xx, where the xx
represents the octal number (0 to 77) identifying the S Unit
involved in the connection. The Perceptron program translates
this by adding the output of S Unit xx (octal) to the excitation
of the proper A Unit. This simulates the operation of a
Perceptron using only the uncomplemented outputs of the S Units.
It is possible to modify the CONMAT program slightly to simulate
both the 8 Unit outputs and their complements by mixing both
ADD and SUB instructions in the CONMAT tape. Thus the words on
the binary tape would be either of the form +0400000004xx or
alternately +0402000004xx, the form used for each comnection to
be selected systematically or at random.

5.3 A printout list of the connections is also provided
for reference, where a 1ist of eight decimal numbers (0 to 63)
is given for each A Unit, identifying the S Units to which it
is connected. This list is in the same order as the binary
list, and so the first group of eight numbers in the CONMAT

11
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listing corresponds to the last A Unit in the Perceptron pro-
gram. The first eight octal instruction words are also printed
on line as & checking feature on the program.

COMPUTER SIMULATION OF THE HALF-PERCEPTRON

6.1 The half-Perceptron program shown in Appendix 3
is designed to have inputs and outputs compatible with the
Perceptron program. It too has 6lf S Units and 6 R Units, but
its logical behavior is governed by the coefficients stored in
1ts 6ix6 element S to R matrix. Because of its simpler logical
structure, the half-Perceptron runs at the rate of approximately
0.5 second per data sample as opposed to the 5.1 seconds per
sample for the Perceptron. It also becomes practical to print
out the internal structure (MATRIX) of the half-Perceptron
periodically during training.

6.2 Figure L shows the flow chart of the half-Perceptron
program. As in the Perceptron, the first instruction that is
encountered after control is transferred from the BELL system
is a STOP to allow the sense switches to be set for the progranm.
If sense switch lj is up, the MATRIX is read in from binary tape 8,
which may contain the MATRIX elements from a preceding run. If -
the switch is down, sense switch 3 is then tested to initialicgze
the MATRIX. 1If switch 3 1s up, all MATRIX elements are assumed
to be zero; if the switch is down, the MATRIX is read into the
machine from the card reader. The half-Perceptron is now
initialized and ready to read input data.

6.3 The input data sample and the desired responses are
then read from a card (if switch 5 is down) or from tape O (if

switch 5 is up) in the same format as that used in the Perceptron.

The only significant difference is that the half-Perceptron
always assumes that six responses are required, and blank spaces
on the ANSWER field of the card wilé be interpreted as required
geros. ' The only penalty paid for the assumed six R Units in the
half-Perceptron is a small time loss. In the Perceptron it was
definitely advantageous to divide up the available A Unite among
only the required number of R Units.

. 6.4 The R Unit states are determined by multiplying each
S Unit excitation by the appropriate MATRIX element and detemmin-
ing whether the net excitation to the R Unit is positive or nega-
tive. The checking and training sections are essentially the
same as those in the Perceptron. Each R Unit state is compared
with the desired response, and the results of the comparison
stored in the CHECK locations. If an R Unit state is wrong,
sense switch 1 is tested to determine whether the MATRIX elements
should be adjusted. If the switch is down, the training pro-

12
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cedure is as follows. If the R Unit state 1s zero and the
desired response is a "1", then the excitation to the R Unit
should be increased. Thus the MATRIX elements associated with

- that R Unit are each increased by the amount of excitation to

the associated S Unit. The reason for this is that S Units which
have zero excitation are not affecting the R Unit excitation,

and there is no justification for increasing the strength of
their connections to the R Unit. If the S Unit excitations are
allowed to range from O through 9 (rather than just being binary
inputs), then the S Units having the largest excitation will have
their connections strengthened the most. There is some justifi-
cation for this, although the training procedure is designed
primarily for binary inputs. If the R Unit state is a "1" where
a "0" is desired, the excitation should be decreased. Thus each
MATRIX element 1s decreased by the amount of the excitation to
the associated S Unit. If the R Unit state agrees with the
desired response, no change is made in the MATRIX elements.

6.5 The printout after each data sample is processed is
identical to that of the Perceptron, containing the 64 S Unit
excitations, the 6 desired responses, the 6 R Unit states, the
6 checking results, and the single bit indicating whether the
half-Perceptron was being trained or merely tested. Output is
on tape 9, and may also be printed on line by placing sense
switch 6 down. After each data sample 18 processed and the re-
sults printed, sense switch 2 1s tested to determine whether the
next data sample should be read (up) or the running terminated
(down). If the switch is down the MATRIX elements are printed
out on tape 9 (and on line if switch 6 is down), and are also
listed in binary on tape 8 so they can be stored for later re-
sumption of running. The program then stops to allow the sense
switches to be reset, and then tranafers back to the BELL System.
During the running of the half-Perceptron, the MATRIX is also
printed out on tape 9 (and optionally on line) after each 100
data samples have been processed. After this printout the
machine continues running. The MATRIX list is slways used and
printed in the same order, so the first 6l entries in the list
correspond to the connections from the 8 Units (in ascending
numerical order) to the first R Unit.

EXPERIMENTAL EVALUATION
OF THE PERCEPTRON AND BALF-PERCEPTRON

7.1 An experimental problem was desired to test the capa-
bilities of the Perceptron and the half-Perceptron. The simplesat
logical problem that can be given a classification machine is
to require that each of its outputs be identical to one of its
inputs, and thus independent of all other inputs. This was the
test problem used for the two learning machines, and the states

13
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of the six R Units were required to be identicel to the states
of the first six S Units. The FORTRAN program in Appendix |
generates the input data for the problem. A random list of 64
binary numbers is generated from the random number routine and
used as the S Unit excitation. The first six of these are also
used as the desired responses, and the two groups are written
on tape 6 in the proper format for input to the Perceptron or
half-Perceptron programs. A list of 1000 data samples was pre-
pared in this way. '

7.2 A measure of the degree of learning is given by the
number of errors occurring in a fixed number of data samples.
The errors were counted in groups of ten input samples, and the
number of errors in each group is plotted as a function of the
total number of input samples in Figure S for the half-Perceptron
and Figure 6 for the Perceptron. In the half-Perceptron case
all 1000 input samples were processed in direct succession. 1In
the Perceptron the first 237 samples were processed in one run,
then in the second run the first 520 samples were processed. '
Thus between input samples 238 and 474 the machine was preccess-
ing input data that it had already seen once before, while other
data samples were only being processed for the first time. The
fact that there is no noticeable discontinuity in the learning
curve either at the 237 or the 474 sample points verifies the
fact that the learning process chosen is only‘'an incremental
training and that more than one pass through a given set of data
is necessary before it is fully assimilated. .

7.3 The learning curves for the half-Perceptron and the
Perceptron are similar in general form, beginning from a point
in the vicinity of the 30 errors (in sixty possible bits) that
would be predicted from purely random operation and decaying
more or less exponentially toward some lower error rate. The
initial slopes for the two machines are roughly the same, al-
though the half-Perceptron reaches a higher degree of learning
nuchi sooner than the Perceptron. Notice that in the half-Perceptron
the error rate gets quite sma.l, and that the machine actually
made no errors at all in the last 100 samples. The Perceptron,
on the other hand, only approaches an error rate of about 4
errors per 50 bits and seems to maintain this level of learning.

7.4 The difference in final learning ability of the two
machines is due to the difference in logical organization of the
machines, and to the special nature of this particular problem.
What is really desired in this problem is that the connections
in the logical network from S Unit X to R Unit X be strengthened,
and that the connections from all the other S Units to that R
Unit be zero or canceled. Because of the organization of the
half-Perceptron, this can actually be done in this machine; and

" 4in fact it can be seen directly from the MATRIX elements. In

Iy

e e e o e o e
e S Ry
R

¢ o



I,

o m————

NOLTR 61-114

the Perceptron, however, each path from a given S Unit to a
particular R Unit must pass through an A Unit to which other S
Units are comnected. Thus, while the values of all A Units which
do not provide transmission paths between the desired S and R
Units can be made zero, it 1s impossible to eliminate the noise
produced by the other S Unit excitations as they pass through A
Units which do provide transmission paths for the desired S Unit.
This noise can only be reduced by the statistical averaging from
a large number of A Units and goes down as the square root of
the number of A Units. Thus the half-Perceptron can have a gzero
error rate for this simple class of problem but the Perceptron
organization limits the machine to some non-zero error rate
determined by the number of A Units in the machine.

7.5 Another significant difference between the two machines
is the difficulty in interpreting the information stored in the
Values of the Perceptron or in the MATRIX of the half-Perceptron.
In the sample problem where six of the 384 connections in the
half-Perceptron were to be strong relative to the others, this
result shows up very clearly in the MATRIX printout. After the
1000 training samples the six desired connections had coefficients
ranging between 31 and 38, while the remaining 378 elements of
the MATRIX had an average value of -0.541 and a standard devia-
tion around this average of 1.43. The negative average value of
the weak connections 1s due to the tendency for the saverage of
the MATRIX elements to be zero. In the Perceptron the connec-
tions between the desired S and R Units (and thus the learning)
are distributed throughout the machine. In this problem the
learning can be demonstrated by dividing the A Units belonging
to a given R Unit into two classes; those which connect to the
desired 8 Unit, and those which do not. This was done for the
A Units connected to R Unit #5 and the distributions of the
Values plotted in Figure 7 for each of the two classes. Neither
distribution differs significantly from the normal diastribution.
The mean of the Values of those A Units (393) which do not con-
nect to S Unit #5 is -1.8 and the standard deviation of the Values
is 4.7. The mean for the 65 units which did connect to 8 Unit #5
was 1lli.3 and the standard deviation was 5.0. The two standard
deviations are not significantly different, but the different
means show that a significant difference has appeared between
the two classes of A Units, indiceting that learning has taken
place.__The standard dviations are also significantly smaller
than V?Z or 8.72, which would be predicted by random walk con-
siderations, indicating that the Values are converging toward
some fixed distribution and will not continue to vary indefinite-
ly. In more complicated problems the learning will be even more
deeply embedded in the A Unit Values, and in practiocal cases it
may be impossible to recognize the various classes of A Units
from the distribution of their Values.
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7.6 The sample problem just discussed is a very simple one,
and is rather easily solved by both the Perceptron and the half-
Perceptron. A second problem was designed in order to demonstrate
the limits of capability of the two machines. In this problem
only two R Units were used, and in the Perceptron the A Units
were divided between these, giving 1380 A Units to each R Unit.
The desired outputs of the machines were defined as follows: ,
If more of the first five S Units were in the one state than the
number of the next five S Units which were in the one state, the
output of R Unit #5 should be & one. Otherwise (more ones in
the second group of five than in the first group of five, or an
equal number in each) R Unit #5 should be zero. R Unit #6 was
required to be "1" if the number of ones in the first six S Units
was odd and zero if the number of ones was even. The require-
ment on R Unit #5 is still among the class of problems which may
be solved by & half-Perceptron, and is also within the capabili-
ties of the Perceptron, where again the Perceptron 1s likely to
exhibit more random nolse in its output because of its organiza-
tion. The required solution for R Unit #6, however, is one of
the most difficult switching functions of six variables; and it
may be shown that it 1s beyond the theoretical capability of the

» half-Perceptron. While a sufficiently large and general Perceptron

can handle this problem, it becomes very difficult for a
Perceptron of the size and limited organization used here.

7.7 A tape was made from the input tape for the previous
problem, substituting new required R Unit responses according to
the above definitions. The FORTRAN 3 program used to produce
this tape 1s shown in Appendix 5. This tape was processed by
both the half-Perceptron and the Perceptron, and the learning
curves are shown in Figures 8 and 9 respectively. The errors on
each of the two R Units are plotted separately, and the vertical
axis on the plots is the number of errors on the given R Unit in
each group of 20 samples. The upper curve in each Figure repre-
sents the errors in R Unit #5 and the lower 1s for R Unit #6.
The error rate for R Unit #5 in the half-Perceptron is around 2
or 3 errors per 20 samples. This of course indicates that the
problem is being solved by the machine, althcugh convergence is
not as rapid as in the earlier problem of Figure 5. The errors
per 20 samples in R Unit #6 continue to fluctuate around 10,
which indicates that the machine i1s merely guessing at random
and that no solution is being formed.

7.8 Only the first 400 samples of the tape were processed
on the Perceptron, and the errors are plotted in Figure 9. Again
the errors in R Unit #5 are decreasing, and the error rate after
OO samples is about 5 per 20 samples and not significantly
different from the error rate in the half-Perceptron after 400

‘samples. Also the plot of R Unit #6 errors for the Perceptron

shows no indication of learning after 4OO samples. It is not
16
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clear whether this rate would decrease with a much larger number
of input samples, but for this size Perceptron it is unlikely
that the final error rate after a very large number of samples
would get very much below 10. It should be observed that the
relative number of required zeros to ones for R Unit #5 is ap-
proximately 5 to 3 because of the zero requirement when both
groups of S Units have an equal number of ones. Thus a learning
machine could have an error rate as low as 7.5 per 20 samples
merely by observing this bias and guessing all geros. However,
there is no evidence from the data that either machine tried
this tactic.

CONCLUSIONS

8.1 The sample problems shown here demonstrate the type
of performance to be expected from learning machines when they
are given simple problems as in the first example, or when they
are given problems requiring or exceeding their full capabili-
ties. The fact that the half-Perceptron reached a lower error
rate on the first example than the Perceptron did, and that the
performance was similar to that of the Perceptron in the second
example, should not be considered an advantage of the half-
Perceptron type of construction. The reason is that the half-
Perceptron is capable of solving only & limited class of prob-
lems, and that its more direct organization allows a lower error
rate for the problems for which it is designed. The majority of
practical classification problems, particularly problems which
require recognizing switching functions, are likely to exceed
the capabllities of the half-Perceptron; and a learning mechine
having the flexibility of the Perceptron would be required.

8.2 It is possible that a machine concept could be devel-
opsc. having the flexibility of the Perceptron organization, yet
avoiding some of the difficulties inherent in its organization.
However these difficulties tend to disappear as the number of A
Units becomes very large due to averaging out of the random
noise components in the A Units. It is presently impractical to
consider & much larger number of A Units in a computer simulation
because of speed and storage limitations, and present electro-
mechanical realizations of A Unit operation are too bulky and
expensive to allow very large Perceptrons. However, it is
reasonable to expect that some sort of solid state device could
be developed having the logical and memory characteristics of an
A Unit. If such a device could be built along the general lines
of multi-hole magnetic cores and/or thin film lemi-cgnduetor
circuitry, Perceptrons could be considered having 10® or more
A Units. In such machines very powerful logical behavior and
learning capability would be available for solving various kinds
of classification problems.
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8.3 The use of machines such as the Perceptron for naval -
problems such as target classification would be restricted to
laboratory studies. It 1s not practical to use learning machines
as such on board operational vessels because the amount of infor-
mation available (in the form of signals from identifiable tar-
gets) to each vessel would not be sufficient to train such a
machine. Rather the proper use of the learning machines would be
to pool the information available from all sources (tape record-
ings from ships or shore-based installations) and to feed all
this information to a single learning machine for comparative
analysis. In the research phase of target classification studies,
the learning machines could be used to determine which character-
istics of the input data were significant in classifying targets.
In later operational use of such equipment, the laboratory
machine would constantly modify its structure in such a way as
to maintain an optimum classification scheme, based on the
currently available input data. Measurements made on the labora-
tory machine would then provide information for designing, or
perhaps simply readjusting, non-adaptive operational classifiers
for the ships of the fleet.

18
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APPENDIX 1 PERCEPTRON MAIN PROGRAM

24

4 TEST FOR REBUILD

RETAPE

READ NEW CONNECTION MATRIX
INDEX2s1

7

CONMAT+22080s1

*mlelyl

NEWVAL

READ CLD PARAMETERS AND CONNECTION MATRIX
INDEX3s1

8

VALUE+24846»1

*¥ml9lyl

3 TEST FOR RESET VALUES

FIRST

READ NEW SYSTEM PARAMETERS
XINPUT s 4

F&9s0

PLUS

MINUS

THOLD

INDEX4

INDEXS5

ZROVAL

XXXRET

ZROVAL

*44

XINPUT 94

F2990
VALUE» » VALUE+2759

OUTPUT »4 PRINT PERCEPTRON CONSTANTS

F&4990
PLUS
MINUS
THQOLD
INDEX4
INDEXS
ZROVAL
XXXRET
INDEXS5»1
RIGHT =251
RIGHT+1,1

READ NEXT STIMULUS AND COMPUTE A INPUTS
XINPUT»4

F3990

SUNIT 9 s ANSWER+S

ONE»1

INDEX292 LOAD 2760

e e g — = = =

o



NEXTA

NEXTR
TESTA

AON

STORER

RON

TESTR

INCRE

LXD
CLA
LOQ
STQ
ADD
TXI
TIX
SuB
STO
TIX
REM
LXD
LXD
LXD
CLA
LoQ
TQrP
SUB
LDQ
STQ
TXI
TIX
TRA
ADD
LoQ
STQ
TX1
TIX
TPL
CLA
TRA
CLA
STO
TIX
REM
LXD
LXD
CLA
sus
TZE
SWT
TRA
LXD
TMI
cLs
ADD
STO
TXI
TIX
TRA
CLA
ADD
STO
TXI

INDEX3 94
ZERO

CONMAT+2208091

*+1

*+19l9l
¥mbfhybyl
THOLD
AUNIT+276092
NEXTAs2,1

NOLTR 61-114

LOAD 8

ADDRESS COMPUTED BY PROGRAM
INCREMENT CONNECTION
COUNT INNER LOOP

COUNT A UNITS

COMPUTE R UNIT INPUTS AND OQUTPUTS

ONE»sl
INDEX492
INDEXS 4
2ERO
AUNIT+276091
AON
VALUE+27601
MINUS
AUNIT+276091
*+19lyl
TESTAs4sl
STORER
VALUE+2T76091
PLUS
AUNIT+2760s1
¥+19lyl
TESTA»4sl
RON

ZERO

*42

ONE
RUNIT+692
NEXTR#291

CHECK ANSWERS AND TRAIN

INDEX491
INDEX5192
RUNIT+691
ANSWER+691
RIGHT

1

RIGHT=~1
INDEX514
INCRE
AUNIT+276092
VALUE+276092
VALUE+276092
*+1929=1
il T TPY
RIGHT=2 -
AUNIT+276092
VALUE+276092
VALUE+276042
*+1929~1

LOAD R
LOAD 2760/R

COUNT A UNITS

COUNT A UNITS

LOAD R
LOAD 2760/R

TEST FOR TRAINING

COUNT A UNITS FOR GIVEN R UNIT

2 A




e i T NN a5 125 -

RIGHT

ZERO
ONE
INDEX2
INDEX3
Fl

F2
F3

Fa4

SUNIT
ANSWER
RUNIT
CHECK
TRAIN
AUNIT
VALUVE
CONMAT
INDEX4
INDEXS
PLUS
MINUS
THOLD
ZROVAL

TIX
TXI
CLA
STO

TIX
CLA
SWT
CLA
$TO
TSX
NTR
MON
SWT
TRA
TSX
NTR
MON
REM
LXA
WTB
CPY
TIX
HPR
TSX
HTR
oCT
ocCT
oCcT
oCT
BCD
ocT
BCD
BCD
ocT

BCD

ORG
BSS
BSS
BSS
BSS

8Ss

8s
BSS

END

NOLTR 61-114

LLTYY TP COUNT A UNITS FOR GIVEN R UNIT
*+102

ONE

CHECK+691

*¥+1929

TESTRsloel COUNT R UNITS

ONE

1 TEST FOR TRAINING

ZERO

TRAIN
QUTPUT s 4
FlesO0
SUNITs»s»TRAIN
>

STIM

OQUTPUT 924 PRINT PRESENT VALUES
F2990

VALUE s » VALUE+2759

WRITE PARAMETERS AND CONNECTION MATRIX ON TAPE 8
INDEX3»s1

8

VALUE+2484691

*=l9lsl

TEST FOR STOP

RETURN 4

*=]

000000000000

000001000000

005310053100 2760 22080
000010060416 8 24846
5(10X9641193(3X9611)93X911)
171777771777

1(1216)

3(641192X9611)

777777777717

1(616)

256 OCTAL 400
64

6

6

é

2760

2760

22080
NUMBER OF R UNITS (R)
2760/R

24

vt ey



10

20

30
40

50

60

GOLLOLLLLOLOL

70
100
110
120
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NOLTR 61-114

APPENDIX 2 PERCEPTRON CONNECTION

DIMENSION LIST(8+2760)
READ 100+Q9INST

NO=0

DO 40 J=192760

DO 40 Is=1,8

Nel=]

CALL NUMBER(QoR)
IR=R#64,

IFIN)TO0+40920

DO 30 Ks=slsN
IFCIR=LIST(KsJ))30910930
CONTINUVE

LIST(leJImIR

PRINT 1100 ((LIST(I0J)sIn]098)9Jm]192760)
LXD NOs (D)

wie 7

CLA LISTe(1)

ARS 18

ADD INST

STO LISTs(])

CPY L1ISTsel1)
TXI#600(1)el
TXL®#500(]1)922079

WEF 7

WRITE OUTPUT TAPE 1191200(LIST(Is1)915148)
CALL RETURN

stTOoP

FORMAT{2012)
FORMAT(4(4X9813))
FORMAT(10X+8012)

END

MATRIX PROGRAM




ORG
HPR
SWT
TRA
SWT
TRA
TSX
NTR
MON
TRA

READ8 LXD
RTB
cPY
TIX
CLA
STO

STIM  TSX
NTR
MON
REM

. LXD
LXD

NEXTR LXA
STZ
LoQ
MPY
ADD
STO
TXI
TIX
LDQ
TPL
LoQ
STQ
TIX
REM
LXD
LXD

TESTR CLA
SUB
TZE
SWT
TRA
LXA
™I
CLA
SUB
$TO
TX1
TIX
TRA

INCRE CLA

NOLTR 61-114

APPENDIX 3 HALF=PERCEPTRON PROGRAM

100

4 TEST FOR NEW MATRIX
READS

3 TEST FOR ZERO MATRIX
STIM=2

XINPUT 94

F3ysll

MATRIX » sMATRIX+383

STIM=2

INDEX1+91 384
8

MATRIX+384 91

*=]191yl

HNDRED

COUNT

XINPUT 94

FlssO

SUNIT s s ANSWER+S

COMPUTE RUNIT INPUTS: AND OUTPUTS
INDEX1s1l 384
INDEX292 ' 6
INDEX1 94 64
RUNIT+692

SUNIT+6494

MATRIX+38491

RUNIT+692

RUNIT+69+2

*+1ple=1

*=594y1

ONE

*$2

ZERO

RUNIT+692

NEXTRes291

CHECK ANSWERS AND TRAIN

INDEX1»1 384
INDEX292 6
RUNIT+6942

ANSWER+692"

RIGHT

1 TEST FOR TRAINING
RIGHT=1 : )
INDEX1 4 64
INCRE =

MATRIX+384»1

SUNIT+6414

MATRIX+38491

*+lpls=~1

Habobyl

RIGHT=2

MATRIX+384)»1




RIGHT

ZERO
ONE
HNDRED
INDEX1
INDEX2
F1

F2

F3

Fé4
SUNIT
ANSWER
RUNIT
CHECK
TRAIN
COUNT
MATRIX

ADD
$T0
TXI
TiX
TX1
CLA
$TO .
TX1I
TIX
CLA
SWT
CLA
STO
TSX
NTR
MON
CLA
suB
STO
TZE
SWT
TRA
TSX
NTR
MON
SWT
TRA
Lxp
WTB
CPY
TIX
HPR
TSX
HTR
ocT
ocCT
oCT
ocT
ocT
BCD
ocCT
BCD
ocCT
BCD
8CD
BSS
BSS
BSS
BSS

BSS
END

NOLTR 61-114

SUNIT+6494
MATRIX+38491
#+l9le=1
Hembgfhyl
*+19l964
ONE
CHECK+6192
¥4lyle=64
TESTRe291
ONE

1

ZERO

TRAIN
QUTPUT»4
F2990
SUNIT» o TRAIN
COUNT

ONE

COUNT

*43

2 .

STIM
QUTPUT 94
F&990
MATRIX» s MATRIX+383
2

STIM=2
INDEX1»s1l

8
MATRIX+38491
#=19191

RETURN» 4

L D34
000000000000
000001000000
000144000000
000600000100
000006000000
3{641192X9611)
771717777177

5(10X9641193(3X9611)93Xe11)

7777777771117
1(816)
1(1616)

64

6

6

6

384
100

TEST FOR TRAINING

TEST FOR STOP

PRINT PRESENT MATRIX

TEST FOR STOP

384

100

384 64
6 0




PLOLLOLLOLOOKL

10
20

100
110

10

20

30
40

S0

60

100
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APPENDIX 4 DATA GENERATION  PROBLEM 1

DIMENSION KLM(64)
READ 100+Q

DO 20 J=191000

DO 10 K=lys64

CALL NUMBER (QsR)
KLM(K)=R+¢ 8

WRITE OUTPUT TAPE 69110 (KLM(K) sKu1964) 9 (KLM(K)sKu196)
END FILE 6

FORMAT (012)

FORMAT (641192X0613)
END

APPENDIX 5 DATA GENERATION  PROBLEM 2

DIMENSION M(64)9N(6)

DO 10 I=194

N(1)=0

L=2

DO 60 12191000

READ INPUT TAPE 60100+(M(J)sJul0b4)
17 (ME1)+M(2)+M(3)+M(4)+M(5)=M(6)=M(T)=M(8)=M(9)=M(10))20920030
N(5)=0

GO TO 40

N(5)sl
KsM(1)+M(2)4M(3)4M(4)+M(5)+M(6)

CLA K

TZE#50

SUB L

TZE#50

SUB L

/

-TZE#50

SUB L

TZE#50

N(6)=1

GO TO 60

N(6)=0

WRITE OQUTPUT TAPE T791000(M(J)sJn1064)9(N(J)eJm196)
END FILE 7

CALL RETURN

STOP

FORMAT (641192X06811)
END
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